
Tim Appnel, Senior Product Manager
GitHub: tima
Twitter: appnelgroup

ANSIBLE BEST PRACTICES: ROLES & MODULES

4

THE ANSIBLE WAY

5

COMPLEXITY KILLS PRODUCTIVITY.

That's not just a marketing slogan. We really mean it and
believe that. We strive to reduce complexity in how we've
designed Ansible tools and encourage you to do the
same. Strive for simplification in what you automate.

6

OPTIMIZE FOR READABILITY.

If done properly, it can be the documentation of your
workflow automation.

7

THINK DECLARATIVELY.

Ansible is a desired state engine by design. If you're
trying to "write code" in your plays and roles, you're
setting yourself up for failure. Our YAML-based
playbooks were never meant to be for programming.

Use the right tool for the job

ROLES
• Self-contained portable units

of Ansible automation
• Expressed in YAML and

bundled with associated
assets

• Decoupled from assumptions
made by plays

ROLES + MODULES

8

MODULES
• Small “programs” that

perform actions on remote
hosts or on their behalf

• Expressed as code
– i.e. Python, PowerShell

• Called by an Ansible task
• Modules do all of the heavy

lifting in Ansible

Use the right tool for the job

ROLES
• Reuse and collaboration of

common automation
workflows & configurations

• Provide full life-cycle
management of a service,
microservice or container

• “De-facto” enforcement of
standards and policies

ROLES + MODULES

9

MODULES
• Sophisticated interactions

and logic of a unit of work
usually with a command line
tool or APIs

• Abstract complexity away
from users to make powerful
automation simple

Use the right tool for the job

ROLES

ROLES + MODULES

10

MODULES

BEST PRACTICES: ROLES

11

The same best practices for your plays still apply

• Use native YAML syntax
• Version control your Ansible content
• Use command modules sparingly
• Always seek out a module first
• “Name” your plays, blocks and tasks
• Use human meaningful names with variables, hosts, etc.
• Clean up your debugging messages

12

ROLES ARE ANSIBLE CONTENT

Keep the purpose and function of a role self-contained and
focused to do one thing well

• Think about the full life-cycle of a service, microservice or
container — not a whole stack or environment

• Keep provisioning separate from configuration and app
deployment

• Roles are not classes or object or libraries – those are
programming constructs

• Keep roles loosely-coupled — limit hard dependencies on other
roles or external variables

13

ROLE DESIGN

14

EXHIBIT A

blackbox_role_playbook.yml

- hosts: all
 roles:
 - umbrella_corp_stack

EXHIBIT B

componentized_roles_playbook.yml

- hosts: localhost
 roles:
 - azure_provisioner
- hosts: all
 roles:
 - system_security
- hosts: webservers
 roles:
 - python_common
 - python_django
 - nginx_uwsgi
 - racoon_app
- hosts: databases
 roles:
 - pgsql-replication

Maximize your role design for portability and reuse

• Use ansible-galaxy to
install your roles

• Use a roles files (i.e.
requirements.yml) to
manifest your project roles

• When using a shared role
always declare a specific
version such as a tag or
commit

16

ROLE DESIGN

requirements.yml

- src: nginxinc.nginx
 version: 0.8.0
- src: samdoran.pgsql-replication
 version: b5013e6
- src: geerlingguy.firewall
 version: 2.4.0

Roles should run with as few, if any, parameter variables as
possible

• Practice convention over configuration
• Provide sane defaults
• Use variable parameters to modify default behaviour
• Easier to develop, test and use quickly & securely
• A role should always be more than a single task file

17

ROLE USABILITY

https://en.wikipedia.org/wiki/Convention_over_configuration

18

EXHIBIT A

defaults_no_playbook.yml

- hosts: webservers
 roles:
 - role: apache_simple
 apache_http_port: 80
 apache_doc_root: /var/www/html
 apache_user: apache
 apache_group: apache
 - role: apache_simple
 apache_http_port: 8080
 apache_doc_root: /www/example.com
 apache_user: apache
 apache_group: apache

EXHIBIT B

defaults_yes_playbook.yml

- hosts: webservers
 roles:
 - role: apache_simple
 - role: apache_simple
 apache_http_port: 8080
 apache_doc_root: /www/example.com

default/main.yml

apache_http_port: 80
apache_doc_root: /var/www/html
apache_user: apache
apache_group: apache

Use variables in your roles appropriately

• defaults/ are easy to override and most commonly used to
modify behavior

– i.e. port number or default user

• vars/ are used by the role and not likely to be changed
– i.e. a list of packages, lookup table of machine images by region

19

ROLE USABILITY

20

vars/main.yml

apache_packages:
 redhat:
 - httpd
 - mod_wsgi
 debian:
 - apache2
 - libapache2-mod-wsgi

default/main.yml

apache_http_port: 80
apache_doc_root: /var/www/html
apache_user: apache
apache_group: apache

Automate the testing of your roles

Use molecule, a testing framework designed to aid in the
development and testing of Ansible Roles.

Initially developed by the community, led by John Dewey of Cisco, and
adopted by Red Hat as an official Ansible project.

https://github.com/ansible/molecule

22

ROLE USABILITY

https://github.com/ansible/molecule

Automate the testing of your roles

Use ansible-lint, a command-line static analysis tool that checks
playbooks and roles for identifying behaviour that could be improved.

Initially developed by Will Thames and recently adopted by Red Hat as
an official Ansible project.

https://github.com/ansible/ansible-lint

HINT: ansible-lint can be run as part of your Molecule test runs.
23

ROLE USABILITY

https://github.com/ansible/ansible-lint

Still using command modules a lot?

- name: check cert
 shell: certify --list --name={{ cert_name }} --cert_store={{ cert_store }} | grep "{{ cert_name }}"
 register: check_output

- name: create cert
 command: certify --create --user=chris --name={{ cert_name }} --cert_store={{ cert_store }}
 when: check_output.stdout.find(cert_name) != -1
 register: create_output

- name: sign cert
 command: certify --sign --name={{ cert_name }} --cert_store={{ cert_store }}
 when: create_output.stdout.find("created") != -1

ROLE READABILITY

24

Develop your own module

- name: create and sign cert
 certify:
 state: present
 sign: yes
 user: chris
 name: "{{ cert_name }}"
 cert_store: "{{ cert_store }}"

ROLE READABILITY

25

BEST PRACTICES: MODULES

26

Good modules are user-centric

• Modules are how Ansible balances simple and powerful
• They implement common automation tasks for a user
• They make easy tasks easier and complicated tasks possible
• They abstract users from having to know the details to get things done
• They are not one-to-one mapping of an API or command line tool interface

– This is why you should not auto-generate your modules
• They are not monolithic “does everything” modules that are hard to

understand and complicated to use correctly

27

MODULE DESIGN

Making the powerful simple starts with the implementation

• No side-effects with multiple runs
• Err on the side of safety

– i.e. use a temporary file and atomic_move when writing to a file
• Fail fast —— immediately detect and report failure conditions
• Support check mode
• Minimal use of dependencies

28

MODULE IMPLEMENTATION

Modules should provide a predictable user interface

• Think desired state, think declaratively
• Avoid action or command parameters
• Keep parameters focused and narrowly defined — refrain from

parameters that take complex data structures
• Parameter names should be in lowercase and use underscores:

update_cache # YES

UpdateCache # NO

updateCache # NO

MODULES INTERFACE

29

Modules should provide a predictable user interface

• Normalize common parameter names with other modules such
as:

– name
– state
– dest
– src
– path
– username
– password

MODULES INTERFACE

31

• kubernetes
– monolithic and requires expert knowledge of k8s

• ansible-kubernetes-modules
– fine grained API mapping that is autogenerated

• k8s
– better implementation but complex parameters abound and expert knowledge

still required
• k8s_scale

– more focused on a specific task — more of this please

MODULES IN THE WILD

32

For your consideration...

https://docs.ansible.com/ansible/latest/modules/kubernetes_module.html
https://github.com/ansible/ansible-kubernetes-modules/tree/master/library
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_scale_module.html

Provide informative and consistent responses

• Be consistent in what you return
• Make response data reusable by a play or role
• Return only relevant output — no logs files please
• Accurately report changed status
• Support diff mode if applicable — and return the diff conditionally

33

MODULE RESPONSES

Handle errors gracefully and predictably

• Apply defensive programming
• Fail fast — validate upfront and use the built-in argument spec function
• Fail predictably and informatively when errors happen
• Avoid catch all exceptions

MODULE EXCEPTION HANDLING

34

Don't reinvent the wheel

• Make use of module_utils/ -- they’re your friends
– basic.py

– api.py

– facts/

– urls.py

– six.py

– noteworthy others: ec2.py, docker.py, database.py, mysql.py,
powershell.ps1 — and many many more!

36

MODULE IMPLEMENTATION

Documentation is a requirement

• Examples should include the most common and real world usage
• Examples should be in native YAML syntax
• Return responses must be included and described
• Document your dependencies in the requirements section

MODULE DOCUMENTATION

37

Test before you commit and push your code

MODULE TESTING

38

• Utilize the testing tools in ansible/hacking/
– test-module

– ansible-test sanity <MODULE_NAME>

• Create roles and playbooks and to test and verify all your
documented examples

– molecule
• Test locally — not with the CI/CD system

• sysctl
– a master class in writing a “best practice” module

• ping
– the hello world of Ansible

• cron
– module implementing an interface to a command line tool

• get_url
– module implementing an interface to a python library

MODULES IN THE WILD

39

(More) For your consideration...

https://docs.ansible.com/ansible/2.6/modules/sysctl_module.html
https://docs.ansible.com/ansible/2.6/modules/ping_module.html
https://docs.ansible.com/ansible/latest/modules/cron_module.html
https://docs.ansible.com/ansible/latest/modules/get_url_module.html

Sometimes modules need something more

• Local controller execution of a module entirely possible or required...
• Special setup requirements before the module is dispatched to the host...
• Need to supplement a module with the services of another core module

such as copy and a role won’t cut it...

An Action Plugin executes on the controller and perform logic before
dispatching a module

MODULE & ACTION PLUGINS

40

Thanks

41

Ansible Developers Guide
http://docs.ansible.com/ansible/devel/dev_guide/index.html

43

MORE RESOURCES

http://docs.ansible.com/ansible/devel/dev_guide/index.html

